Nová rubrika

Vznik vesmíru, pohled na skutečnost.


Základní skladba vesmíru, čas a prostor.

Otázka, kterou si jistě někdy položil každý z nás: Co bylo před tím, než vznikl vesmír? Odpověď je (překvapivě) více než prostá: "Protože počátek času je totožný se vznikem vesmíru, nemá takováto otázka žádný smysl. Pojmy "před" a "po" nemají bez existence času smysl." (I.M.Chalatnikov). Prostor a čas jsou neoddělitelné od hmoty. Kde chybí jedna složka, nemohou být ani zbylé dvě. Vše, co známe, začalo existovat až po události obecně nazývané "velký třesk" (Big Bang). Tato asi zatím nejdůležitější událost, která se kdy udála, je datována do doby někdy před 15-20 miliardami let. Odhady této doby se v různých pramenech liší.

Na to, proč vesmír vůbec začal existovat, existuje mnoho poměrně složitých teorií. Nejznámější praví, že v okamžiku velkého třesku byla veškerá hmota vesmíru soustředěna v nulovém objemu, tj. hustota hmoty byla nekonečně velká. Tento stav bývá označován "počáteční singularita" nebo pouze "singularita". Takový stav hmoty nedokáže klasická fyzika popsat, a jen stěží si jej dovedeme představit. Zjednodušíme si proto práci představou, že okamžik, kdy bychom na hodinkách měli 0:00:00, je pro nás fyzikálně nepopsatelný. Ihned po velkém třesku byl vesmír zaplněn zářením. Rozpínání a tím také ochlazování dalo podnět ke vzniku elementárních částic a atomů. Nakonec se atomy začaly shlukovat a vznikaly tak galaxie, které se vyvinuly do stavu, v jakém je pozorujeme dnes.

Obvykle uznávaná teorie velkého třesku tvrdí, že vesmír byl vytvořen obrovskou explozí před 15 miliardami let. Tato jedinečná událost stvořila nejen hmotu, ale i energii, prostor a dokonce i čas. Je nesmyslné mluvit o době před velkým třeskem, protože žádná neexistovala. Astronomové se domnívají, že po velkém třesku byl vesmír nesmírně horký a plný záření. Po deseti sekundách se vytvořily elementární částice (protony, neutrony, elektrony), ale atomy samotné (vodík, hélium) se vytvořily až po několika stovkách tisíce let, kdy se vesmír rozpínal a ochlazoval.

VÝVOJ VESMÍRU

Následující řádky budou možná pro méně znalé termínů hůře stravitelné. Vyložit teorii celou by zabralo několik knih, a navíc nepanuje ani mezi vědci absolutní jistota o její správnosti.

Profesionálové nechť prosím odpustí jistá zjednodušení. Takže v kostce: Vývoj vesmíru se obvykle dělí na 4 období, a to podle převládající síly:

1. Hadronové období - trvalo asi do dvou minut od vzniku vesmíru. Probíhaly zde za vysokých teplot dva protichůdné procesy:
a) Anihilace barionů s antibariony
b) Materializace gama fotonů
V tomto období se rozpadla většina hadronů (až na nukleony) a teplota klesla z 10e23 kelvinů na 10e12 kelvinů.

2. Leptonové období - trvalo mezi 2. a 3. minutou po vzniku vesmíru. Některé neutrony neměly čas se rozpadnout a spojily se ochotně s blízkými protony. Tím vznikla jádra nejlehčích prvků: deuterium, helium, lithium. Tento proces bývá označován také jako kosmická nuklogeneze = vznik jader v celém vesmíru. Leptonové období končí anihilací elektronů s pozitrony za teploty 10e10 kelvinů.

3. Fotonové období - trvalo od 3. minuty do 300 000 roků po vzniku vesmíru. Při poklesu teplot pod 10e10 K nedocházelo k materializaci elektronů a pozitronů z fotonů, neboť fotony už měly malou energii. Anihilace leptonů s antileptony však pokračovala za vzniku mnoha fotonů, které však měly nízkou energii.

Ve všech těchto obdobích převládalo záření nad částicemi (látkou), ale rozpínáním se energie obou složek vyrovnaly. Začalo

4. Látkové (=hvězdné) období - trvá dodnes. Rozhodující složkou vesmíru se stávají částice - protony, neutrony, elektrony a převládající silou gravitace. Elektrony se na začátku za teploty 10 000 K spojily s protony a vznikly atomy vodíku. Vesmír se stal prostupný pro záření, neboť se zbavil volných elektronů.



Rozpínání vesmíru

Rozpínání vesmíru probíhá od velkého třesku a potvrzují je všechna pozorování. Rudý posuv ve spektrech ukazuje, že čím jsou galaxie vzdálenější, tím rychleji se vzdalují (tzv. Hubbleův zákon). Vesmír je v určitém okamžiku ve všech místech a směrech stejný, tzn. nemá žádný střed. Pozorovatel v jiné galaxii by tedy viděl to samé, co my - vesmír se rozpíná, platí Hubbleův zákon, naměřil by stejnou rychlost rozpínání.

Pozorování za dostatečně dlouhou dobu by ukázala, že rychlost rozpínání vesmíru se zpomaluje, a tedy klesá hodnota Hubbleovy konstanty, protože proti setrvačnosti rozpínání působí gravitace.